Analysis of sequences and predicted structures required for viral satellite RNA accumulation by in vivo genetic selection.

نویسندگان

  • C D Carpenter
  • A E Simon
چکیده

In vivo genetic selection was used to study the sequences and structures required for accumulation of subviral sat-RNA C associated with turnip crinkle virus (TCV). This technique is advantageous over site-specific mutagenesis by allowing side-by-side selection from numerous sequence possibilities as well as sequence evolution. A 22 base hairpin and 6 base single-stranded tail located at the 3'-terminus of sat-RNA C were previously identified as the promoter for minus strand synthesis. Approximately 50% of plants co-inoculated with TCV and sat-RNA C containing randomized sequence in place of the 22 base hairpin accumulated sat-RNA in uninoculated leaves. The 22 base region differed in sat-RNA accumulating in all infected plants, but nearly all were predicted to fold into a hairpin structure that maintained the 6 base tail as a single-stranded sequence. Two additional rounds of sat-RNA amplification led to four sequence family 'winners', with three families containing multiple variants, indicating that evolution of these sequences was occurring in plants. Three of the four sequence family winners had the same 3 bp at the base of the stem as wild-type sat-RNA C. Two of the winners shared 15 of 22 identical bases, including the entire stem region and extending two bases into the loop. These results demonstrate the utility of the in vivo selection approach by showing that both sequence and structure contribute to a more active 3'-end region for accumulation of sat-RNA C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogenetic Analysis of Three Long Non-coding RNA Genes: AK082072, AK043754 and AK082467

Now, it is clear that protein is just one of the most functional products produced by the eukaryotic genome. Indeed, a major part of the human genome is transcribed to non-coding sequences than to the coding sequence of the protein. In this study, we selected three long non-coding RNAs namely AK082072, AK043754 and AK082467 which show brain expression and local region conservation among vertebr...

متن کامل

Relation Between RNA Sequences, Structures, and Shapes via Variation Networks

Background: RNA plays key role in many aspects of biological processes and its tertiary structure is critical for its biological function. RNA secondary structure represents various significant portions of RNA tertiary structure. Since the biological function of RNA is concluded indirectly from its primary structure, it would be important to analyze the relations between the RNA sequences and t...

متن کامل

Effect of Temperature on Symptoms Expression and Viral RNA Accumulation in Groundnut Bud Necrosis Virus Infected Vigna unguiculata

Background: Groundnut bud necrosis virus (GBNV) (Tospovirus genus, Bunyaviridae family) infects the major crops of solanaceae, leguminosae and cucurbitaceae in India. Temperature is an important factor which influences the plant growth and development under diseased conditions.Objective: In the present study, we evaluated the effect of four different temp...

متن کامل

Analysis of cis-acting sequences involved in plus-strand synthesis of a turnip crinkle virus-associated satellite RNA identifies a new carmovirus replication element.

Satellite RNA C (satC) is a 356-base subviral RNA associated with turnip crinkle virus (TCV). A 3'-proximal element (3'-UCCCAAAGUAU) located 11 bases from the 3' terminus of satC minus strands can function as an independent promoter in an in vitro RNA-dependent RNA polymerase (RdRp) transcription system. Furthermore, in the absence of a 5'-proximal element, the 3'-proximal element is required f...

متن کامل

Structural domains within the 3' untranslated region of Turnip crinkle virus.

The genomes of positive-strand RNA viruses undergo conformational shifts that complicate efforts to equate structures with function. We have initiated a detailed analysis of secondary and tertiary elements within the 3' end of Turnip crinkle virus (TCV) that are required for viral accumulation in vivo. MPGAfold, a massively parallel genetic algorithm, suggested the presence of five hairpins (H4...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 26 10  شماره 

صفحات  -

تاریخ انتشار 1998